Über den Einfluß von Substitution in den Komponenten binärer Lösungsgleichgewichte

XXX. Mitteilung

Die binären Systeme von Diphenylmethan mit Phenolen und Aminen

Von

Robert Kremann und Julius Fritsch

Aus dem physikalisch-chemischen Laboratorium am Chemischen Institut der Universität Graz

(Mit 12 Textfiguren)

(Vorgelegt in der Sitzung am 16. Dezember 1920)

Aus den Versuchen von R. Kremann und O. Wlk, über welche in der XXI. und XXII. Mitteilung dieser Folge berichtet wurde, geht hervor, daß Triphenylcarbinol nur mit mehrwertigen Phenolen und von den Aminen nur mit den beiden Naphtylaminen zu Verbindungen zusammentritt.

Aus der Zusammensetzung der erstgenannten Verbindungen geht hervor, daß Triphenylcarbinol sich den zweiwertigen Phenolen gegenüber, analog dem Verhalten des Trimethylcarbinols, mit zwei Valenzzentren betätigt. Man darf annehmen, daß das eine derselben seinen Sitz an der OH-Gruppe hat, das zweite durch Wirkung der Restvalenzen der benzoiden Reste zustande kommt. Bei den stark dissoziierten Verbindungen des Triphenylcarbinols mit den Naphtylaminen darf man vermuten, daß die benzoiden Restvalenzen in Form mehrerer, jedoch der Intensität nach schwächer wirkenden Valenzzentren zur Geltung kommen. Aus diesen Gründen schien es von Interesse, durch Autnahme von Zustandsdiagrammen von Triphenylmethan und im weiteren von Diphenylmethan mit Phenolen einerseits, Aminen andrerseits die Verbindungsfähigkeit der Komponenten dieser Systeme zu untersuchen, um zu sehen, welche Veränderungen dieselbe bei schrittweiser Entfernung der OH-Gruppe und im weiteren einer Phenylgruppe im Triphenylcarbinol erfährt.

Über die Ergebnisse der Versuche mit Diphenylmethan soll nun in vorliegender Abhandlung berichtet werden.

Wie aus dem von Paterno und Ampola¹ aufgenommenen Zustandsdiagramm hervorgeht, bilden Diphenylmethan und Phenol keine Verbindung, sondern ein einfaches Eutektikum. Ebenso gibt aber auch, wie aus den, in den folgenden Fig. 1 bis 12 graphisch dargestellten Versuchsergebnissen zu sehen ist, Diphenylmethan weder mit den beiden Naphtylaminen und p-Phenylendiamin noch mit den beiden Naphtolen, den drei Dioxybenzolen, Pyrogallol, m- und p-Nitrophenol, noch selbst mit Pikrinsäure Verbindungen im festen Zustande.

Die benzoiden Restvalenzen des Diphenylmethans sind also nicht so kräftig, daß es mit den obgenannten Stoffen zur Bildung von Verbindungen in solchen Konzentrationsbeträgen kommt, daß diese im festen Zustand zur Abscheidung kommen.

Bemerkenswert erscheint, daß Diphenylmethan mit Resorcin und Pyrogallol ausgedehnte Mischungslücken im flüssigen Zustande gibt.

Experimenteller Teil.

I. Die Systeme von Diphenylmethan mit Aminen.

Zur Untersuchung kamen die Systeme von Diphenylmethan mit α - und β -Naphtylamin und *p*-Phenylendiamin. Die in bekannter Weise gewonnenen Versuchsresultate sind in den Tabellen I bis III wiedergegeben. Wie man aus der graphischen Darstellung in den Fig. 1 bis 3 sieht, liegen in allen genannten drei Systemen keine Anhaltspunkte für die Existenz von Verbindungen im festen Zustande vor. Vielmehr bestehen die

¹ Gaz. chim. ital., 27, 481, 1897.

Zustandsdiagramme jeweils ausschließlich aus den Schmelzlinien der reinen Komponenten, die sich jeweils im Eutektikum schneiden. Die den Eutektika entsprechenden Haltzeiten lassen sich bis nahe zu den reinen Komponenten verfolgen.

Die Lage der Eutektika ist die folgende:

Im System Diphenylamin-a-Naphtylamin

bei 63 Gewichtsprozent Diphenylmethan und 9.5°.

Im System Diphenylamin--β-Naphtylamin

bei 95 Gewichtsprozent Diphenylmethan und 21.4°.

Im System *p*-Phenylendiamin—Diphenylamin

bei zirka 99 Gewichtsprozent Diphenylmethan und 23.3°.

Fig. 1.

Fig. 2.

R. Kremann und J. Fritsch,

Tabelle I.

System *a*-Naphtylamin—Diphenylmethan.

Zusatz von «Naphtylamin	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	3.711	100.0	24.0°
0.247	$3 \cdot 958$	93.8	20.5
0.428	4 · 169	88.9	18.6
0.752	4.463	82.3	16.8
1.142	4.853	76.4	13.2
1.580	5.291	70.1	11.5
1.945	5.656	65.5	10.5
2.459	6 · 170	60.1	12.5
2.718	6.429	57.7	13·0°
3.052	6.763	54.9	16.5
3.371	7.082	$52 \cdot 4$	17.4
3.649	7.360	50.4	19.5
4.177	7.888	47.0	21.4
4.655	8.366	44.3	23 · 1
5.119	8.830	42.0	24.6

a) Menge: Diphenylmethan 3.711 g.

b) Menge: Naphtylamin 2.122 g.

Zusatz von Diphenylmethan	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	2.122	0.0	47•1°
0.296	2.418	12.4	30.5
0.616	2.738	22.9	35 • 9 1
0.836	2.958	28.3	32.3
1.125	3.247	$34 \cdot 6$	29.0
]		

¹ Sekundäre eutektische Krystallisation bei 9.5°

Tabelle II.

System β -Naphtylamin-Diphenylmethan.

Zusatz von β-Naphtylamin	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	0.000	100.0	00.08
0.000	2.900	100.0	23.9-
0.272	3.238	91.8	$31 \cdot 81$
0.542	3.508	84.7	48 •0
0.795	3.761	78.8	$55 \cdot 2$
1 · 127	4.193	70.7	64.7
1.589	4.555	65 • 1	72.31
$2 \cdot 281$	$5 \cdot 247$	56.6	79.6
$3 \cdot 546$	6.512	45.5	86.4
5.069	8.035	36.8	91.6
5.916	8.882	33.4	93 • 1 1

a) Menge: Diphenylmethan 2.966 g.

² Sekundäre eutektische Krystallisation bei 21.1°

	b)	Menge:	β -Naphtylamin	2.617 g.
--	----	--------	----------------------	----------

Zusatz von Diphenylmethan	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	2.617	0.0	10 9 · 0 °
0.127	2.774	5.6	105.91
0.336	$2 \cdot 953$	11.3	103.6
0.594	3.211	18.5	101.0
0.857	3.474	$24 \cdot 6$	$97 \cdot 91$
1 · 294	3.911	33.2	$93 \cdot 9$
1.487	4.104	$36 \cdot 2$	92.01
	· · ·		

¹ Sekundäre eutektische Krystallisation zwischen 21.4° und 21.2°.

Tabelle III.

System Diphenylmethan-p-Phenylendiamin.

Zusatz von <i>p</i> -Phenylendiamin	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	2.444	100.0	23:9°
0.020	$2 \cdot 464$	$99 \cdot 3$	$32 \cdot 81$
.0.087	2:531	$96 \cdot 6$	$-74 \cdot 2$
0.272	2.716	89.8	103.43
0.443	2.887	84.8	112.5
0.652	3.096	79.0	-117.51
1.001	$3 \cdot 445$	70.8	121.8
1.443	3.887	$62 \cdot 9$	$123 9^{1}$
1.724	4.168	58.6	125.3
2.021	4.465	$54 \cdot 8$	126.2
2.180	4.624	$52 \cdot 8$	126.81
2.556	5.000	48.8	$127 \cdot 4$
2.956	5.400	45.2	127.91
3:502	5.946	41.0	129.0
3.984	6.428	38.0	129.31

a) Menge: Diphenylmethan 2.444 g.

¹ Sekundäre eutektische Krystallisation zwischen 23.3° und 22.8°

Zusatz von Diphenylmethan	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	2.860	0.0	138·8°
0.245	3.102	$7 \cdot 8$	135.31
0.456	3 316	13.8	133.7
0.661	3.521	18.8	132.61
0.888	3.748	$23 \cdot 8$	131.5
1.124	3.984	28.6	131.01
1.314	4.174	31 • 4	130-1
1.567	4.427	35 5	129.71
¹ Sekundäre eu	' tektische Krysta	' llisation zwischen 2	3.1° und 22.8°

b) Menge: p-Phenylendiamin 2.860 g.

II. Die Systeme von Diphenylmethan mit α - und β -Naphtol, den Dioxybenzolen und Pyrogallol.

Die Versuchsergebnisse mit diesen Systemen sind in den folgenden Tabellen IV bis IX mitgeteilt. Aus der graphischen Wiedergabe in den Fig. 4, 5, 6 und 8 sieht man, daß in den Systemen von Diphenylamin mit α , β -Naphtol, Brenzkatechin und Hydrochinon das Zustandsdiagramm aus den Schmelzlinien der Komponenten besteht und kein Anhaltspunkt für die Existenz einer Verbindung beider Komponenten vorliegt.

Die dem Eutektikum beider Komponenten entsprechenden Haltzeiten lassen sich bis nahe an die reinen Komponenten verfolgen.

Die Eutektika haben in den einzelnen Fällen die folgende Lage.

Im System Diphenylmethan— α -Naphtol \cdot

bei 92.5 Gewichtsprozen. Diphenylmethan und 19.6°, im System Diphenylmethan— β -Naphtol

bei 95.0 Gewichtsprozent Diphenylmethan und 22.6°,

Chemie-Heft Nr. 10.

im System Diphenylmethan-Brenzkatechin

bei 99.0 Gewichtsprozent Diphenylmethan und 23.1°, im System Diphenylmethan-Hydrochinon

bei fast 100 Gewichtsprozent Diphenylmethan und 23.9°.

Je höher also der Schmelzpunkt der zweiten Komponente ist, desto mehr liegt das Eutektikum auf der Seite der diphenylreichen Schmelzen, desto höher ist seine Temperaturlage und die Schmelzlinien von Diphenylmethan erstrecken sich über ein immer kleineres Konzentrationsgebiet. Dies führt dazu, daß im System Hydrochinon—Diphenylmethan die Schmelzlinie des Diphenylamins in einen Punkte zusammenschrumpft, so daß das Eutektikum mit dem Schmelzpunkt des reinen Diphenylmethans zusammenfällt.

Auch in den Systemen von Diphenylmethan-Resorcin und Diphenylmethan-Pyrogallol liegen keinerlei Anhaltspunkte für die Existenz von Verbindungen vor. Insofern unterscheiden sich diese Systeme von den übrigen hier behandelten Systemen dadurch, wie die Fig. 7 und 9 es zeigen, daß in diesen beiden Systemen Mischungslücken im flüssigen Zustande vorliegen.

Im System Resorcin—Diphenylamin reicht die Mischungslücke im flüssigen Zustand bei der nonvarianten Temperatur der primären Krystallisation von Resorcin bei rund 102°, von 27 bis 84 Gewichtsprozent Diphenylmethan.

Diese Sättigungsgrenzen ergeben sich bei der extrapolatorischen Verlängerung der Grenzkurve zwischen den einphasigen und zweiphasigen flüssigen Systemen, wie sie in Fig. 7 als gestrichelte Kurve gezeichnet ist, bis zu ihrem Schnitte, mit der Horizontalen der Temperatur obgenannten nonvarianten Gleichgewichtes zweier flüssiger Schichten mit festem Resorcin.

Der kritische Lösungspunkt der beiden flüssigen Schichten liegt bei 115.4°.

Das Eutektikum von Resorcin mit Diphenylamin liegt ganz nahe bei reinem Diphenylmethan und bei 23.1° und lassen sich die eutektischen Haltpunkte bis nahe an reines Resorcin verfolgen, ein Zeichen der Nichtexistenz irgendeiner Verbindung.

Bei der Aufnahme des Zustandsdiagrammes Diphenylmethan-Pyrogallol beobachteten wir ein ganz eigentümliches Verhalten. Geht man aus von Diphenylmethan und setzt allmählich Pyrogallol zu, so steigt die Schmelzlinie nach Durchlaufen des ganz nahe bei reinem Diphenylmethan liegenden Eutektikums steil an. Ihr entspricht Pyrogallol als Bodenkörper.

Ist, wie aus Tabelle IX hervorgeht, der Diphenylmethangehalt auf etwa $89^{0}/_{0}$ gesunken, beobachtet man das Auftreten zweier flüssiger Schichten.

Versucht man nun unter steigender Zugabe von Pyrogallol jeweils die Temperaturgrenze der Entmischung festzulegen, erhält man recht unklare Verhältnisse. Es stellte sich zwecks Ausarbeitung des Zustandsdiagrammes alz zweckmäßig heraus, jede Mischung neu einzuwägen, um für die Mischungen der verschiedenen Zusammensetzungen die Entmischungstemperaturen sowie die Temperaturen der primären, beziehungsweise sekundären Krystallisation festzulegen.

Die diesbezüglichen Versuche sind nun in der Tabelle IX awiedergegeben. Im besonderen aus der graphischen Darstellung der Versuchsergebnisse sieht man, daß im Gebiete von 10 bis 92 Gewichtsprozent Diphenylamin zwei flüssige Phasen vorliegen. Aus der pyrogallolreichen Schicht scheidet sich in diesem Konzentrationsgebiet primär Pyrogallol bei 115° im Mittel ab. Diphenylamin scheidet sich sekundär im genannten Konzentrationsgebiet bis nahe an 100 Gewichtsprozent Diphenylamin ab, wie aus der Tatsache, daß die sekundären Haltpunkte bei 23.5° bis zu den pyrogallolreichsten Mischungen beobachtet wurden, hervorgeht. Der kritische Lösungspunkt liegt hier bei rund 123°.

Tabelle IV.

System Diphenylmethan $-\alpha$ -Naphtol.

Zusatz von Diphenylmethan	Gesamtmenge	Gewichtsprozentc Diphenylmethan	Temperatur der primären Krystallisation
0.000	1.414	0.0	93·1°
0.029	1.473	$3 \cdot 9$	91.31
0.121	1.565	9.4	88.2
0.256	1.670	15.4	$85 \cdot 41$
0.328	1.742	18.8	83.8
0.441	1.855	23.6	$82 \cdot 2$
0.535	1.949	$27 \cdot 1$	80.51
0.680	2.094	32.4	78.0
0.839	2.253	$37 \cdot 2$	75.01

a) Menge: a-Naphtol 1.414 g.

Zusatz von α-Naphtol	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	1.937	100.0	 23·9°
0.098	2.035	95.4	21.5
0.226	2.163	89.6	zirka 26 1
0.364	2.301	84.2	$34 \cdot 21$
0.470	2.407	80.7	$39 \cdot 0$
0.527	2.464	78.7	42.0
0.636	2.573	75.3	46.01
0.757	2.694	72.0	$48 \cdot 4$
0.954	2.891	67:0	$54 \cdot 0$
1.102	3.039	63.9	$57 \cdot 21$
1.383	3.220	60.1	61 · 1
1.848	3.785	$51 \cdot 2$	$67 \cdot 1$
$2 \cdot 436$	4.373	$44 \cdot 3$	71.21
$3 \cdot 238$	5.175	37.4	75.3
4.372	6.309	30.7	78.41

b) Menge: Diphenylmethan 1.937 g.

.

Tabelle V.

System Diphenylmethan $-\beta$ -Naphtol.

a)	Menge:	Dipheny	lmethan	2.093 g.
				0 -

Zusatz von β-Naphtol	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	2.093	100.0	23.80
0.139	3.132	95.5	25.51
0.527	3.520	85.0	61.01
0.684	3.677	81.1	67.01
0.843	3.836	78.0	72.51
$1 \cdot 138$	4.131	72.4	78-1
1.850	4.823	61.8	87.0
$2 \cdot 336$	5.329	56.1	91.3
3.033	6.026	49.6	94.4
3.974	6.967	42.9	98.5
$4 \cdot 322$	7.315	40.9	99.02
4.749	7.742	38.6	99.7
5.189	8.182	36.6	100.5
5.925	8.918	33.5	102.0
¹ Sekundäre et	l itektische Krysta	l llisation bei 22.6°	
2 >	»	» » 22.6°	

b) Menge: β -Naphtol 2.709 g.

Zusatz von «-Naphtol	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	2.709	0.0	122·0°
0.193	2.902	7 · 1	117.0
0.452	3.161	14.3	112.0
0.641	3.3 50	19.2	$108 \cdot 9$
0.731	3.440	21.2	108.0
0.932	3.644	25.7	105.5
1.068	3.777	28.5	104.5
1.432	4.141	34.8	101.7
	-		

Tabelle VI.

System Diphenylmethan-Brenzkatechin.

	Zusatz von Brenzkatechin	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation	
l	0.000	2.484	100.0	23·9°	
	0.067	2.551	97.4	40.31	1.1.1
	0.139	2.623	94.8	56.0	799.5
	0.214	2.698	$92 \cdot 3$	63.0	
l	0.316	2.800	88.7	69.0	
	0.471	2.955	$84 \cdot 2$	74.11	ľ
	0.658	3.142	79.1	78.8	l
	0.903	3.787	73•4	$82 \cdot 1$	ŀ
	1.164	3.648	68.0	84.01	ŀ
1	$1 \cdot 435$	3.919	63•3	85.9	
	1.723	4.207	59.1	87.0	ŀ
	1.940	4 ·424	56.2	87.6	
	$2 \cdot 415$	4.899	50.7	89.21	
	3.038	5.522	45:0	90.3	ľ
	3.715	6.199	40.1	91.8	
	4.175	6.659	37.3	92 · 1	l
	$5 \cdot 235$	7.619	67.4	$93 \cdot 2$	ŀ
					1

a) Menge: Diphenylmethan 2.484 g.

¹ Sekundäre eutektische Krystallisation bei 23·1°

b)	Menge:	Brenzkatechin	2.624 g.
_			

Zusatz von Diphenylmethan	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	2.624	0.0	101·8°
0.098	2.722	3.6	100.4
0.260	2.884	$8 \cdot 9$	$98 \cdot 81$
0.355	$2 \cdot 979$	11.7	$97 \cdot 8$
0.776	3.400	$22 \cdot 9$	$95 \cdot 2$
1.076	3.700	29•1	93.91
1.406	4.030	$34 \cdot 9$	$92 \cdot 5$
1.740	4.364	$39 \cdot 9$	$91 \cdot 21$

¹ Sekundäre eutektische Krystallisation bei 23.2°

Tabelle VII.

System Diphenylmethan-Resorcin.

Zusatz von Resorcin	Gesamtmenge	Gewichts- prozente Di- phenylmethan	Temperatur der primären Krystallisation	Temperatur des Gleichgewichtes zweier flüssiger Schichten
0.000	3.670	100.0	23·9°	
0.182	3.852	95.2	78.51	—
0.353	4.023	91.2	$92 \cdot 51$	—
0.531	4.201	87.3	98.4	—
0.856	4.526	81 · 1	100.91	106·5°
1.391	5.061	73.1	103.5	112.1
1.651	5.321	$68 \cdot 9$	101.41	114.2
2.092	5.762	$63 \cdot 4$	101.6	115.1
2.683	6.353	$57 \cdot 7$	101.41	115.4
3.615	7.285	50.3	101.4	115.0
4.274	7.944	$46 \cdot 2$	101.61	114.0
5.248	8.918	41.1	101.8	112.1
5.983	9 653	38.0	101.8	110.0
6.582	$10 \cdot 252$	$35 \cdot 5$	101.8	109.0
¹ Sekund	äre eutektische	l Krystallisation	l 1 zwischen 23.	l 5° und 23·1°

a) Menge: Diphenylmethan 3.670 g.

	•	

b)	Menge:	Diphenylmethan	2.514 g.
----	--------	----------------	----------

Zusatz von Resorcin	Gesamtmenge	Gewichts- prozente Di- phenylmethan	Temperatur der primären Krystallisation	Temperatur des Gleichgewichtes zweier flüssiger Schichten
0.000	2.514	100.0	23·9°	
0.020	2.534	99.3	27.81	
0.079	2.593	.97.0	$53 \cdot 3$	
0.121	2.635	$95 \cdot 2$	75.61	—
0.171	2.685	93.4	85.0	
0.231	2:745	$91 \cdot 3$	90.8	_
0.342	2.856	87.8	96.5	
0.502	3.016	80.5	100.11	106.3
0.733	$3 \cdot 247$	77.3	100.8	109.5
1.762	4.276	58.7	101.51	115.4
2.943	5.457	46.0	101.6	114 1
4.007	6.521	. 38.5	101.5	111.0
4.622	7.136	35.2	101.61	108.4
5.430	7.944	31.6	101.8	105.8
1 Sekund	äre eutektische	 Krystallisation	 bei 23·5°	

Zu Tabelle VII.

Zusatz von Diphenyl- methan	Gesamtmenge	Gewichts- prozente Methan	Temperatur der primären Krystallisation	Temperatur des Gleichgewichtes zweier flüssiger Schichten
0.000	3.157	0.0	108·8°	
0.113	3.270	$3 \cdot 5$	· 107·51	·
0.370	3.527	10.3	105.4	
0.538	3.692	13.6	104.3	
0.711	3.868	18.3	103.21	-
0.921	4.078	$22 \cdot 5$	102.5	
1.029	4.186	24.5	101.81	
1.162	4.319	26.8	101.6	
1.337	4.494	29.7	101.6	104.5
1.572	4.729	$33 \cdot 2$	101.61	107.3
1.755	4.912	35.7	101.6	109.3
1		1	1	1

c) Menge: Resorcin 3.157 g.

¹ Sekundäre eutektische Krystallisation bei 23 1°

Fig. 7.

Tabelle VIII.

System Diphenylmethan-Hydrochinon.

Zusatz von Hydrochinon	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	2.431	100.0	23.9°
0.014	2.445	$99 \cdot 2$	$62 \cdot 41$
0.025	2.456	$98 \cdot 8$	$92 \cdot 3$
0.046	2.477	$98 \cdot 4$	101.8
0.074	2.505	$97 \cdot 2$	117.41
0.119	2.550	$95 \cdot 3$	126.8
0.202	2.636	92.0	zirka 140
0.314	2.745	88.4	zirka 149 1
0.468	2.899	84 • 1	zirka 154
0.712	3.143	77.4	158.6
0.923	3.384	71.9	160.5
$1 \cdot 247$	3.678	66.0	161.0
1.651	4.082	59.5	161.8
2.001	4.432	$54 \cdot 8$	162.0
2.934	5.365	45.3	162.01
4.035	6.466	37.6	162.0
5.258	7.689	31.6	162.1

a) Menge: Diphenylmethan 2.431 g.

¹ Sekundäre eutektische Krystallisation bei 23.9°

Zusatz von Diphenylmethan	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	3.051	0.0	168·8°
0.028	3.109	1.6	168.61
0.162	3.213	5.0	167.4
0.323	$3 \cdot 374$	9.5	166.0
0.461	3.512	13 · 1	165.21
0.698	3.749	18.7	163.7
0.990	4.041	24.5	$162 \cdot 51$
1.261	4.312	29.3	$162 \cdot 1$
1.739	4:790	$36 \cdot 3$	$162 \cdot 0$
2.308	5.359	43 · 2	162.01

b) Menge: Hydrochinon 3.051 g.

4 Sekundäre eutektische Krystallisation bei 23.9°

Zu Tabelle VIII.

c)	Menge:	Hydrochinon	2.542 g.
-			

Zusatz von Diphenylmethan	Gesamt- meng e	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	2.542	0.0	168.8
0.165	2.707	6.4	167.0
0.387	$2 \cdot 929$	13.3	$165 \cdot 2^{1}$
0.706	$3 \cdot 248$	21.8	163 0
0.917	3.459	26.6	$162 \cdot 5^{2}$
-			
1 6-1	' - 1- 4 : 1 17 4		
2 Sekundare eut	ektische Krysta	23.9°	
	-	240	

Fig. 8.

Tabelle IX.

System Diphenylmethan-Pyrogallol.

Zusatz von Diphenylmethan	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	2.923	100.0	23.9°
0.037	2.960	98.7	75.61
0.076	2.999	97.4	$93 \cdot 4$
0.126	3.049	$95 \cdot 8$	105.4
0.247	3.170	92.2	113.9
0.376	$3 \cdot 299$	88.8	115 · 01 u. 2

Menge: Diphenylmethan 2.923 g.

¹ Sekundäre eutektische Krystallisation bei 23.4°

² Von dieser Mischung an besteht die Schmelze aus zwei flüssigen Schichten.

T	'ah	1م	10	IX	0
1	av	CI.	IÇ.	177	a.

	Menge von Diphenylmethan	Menge von Pyrogaliol	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation	Temperatur des Auftretens und Verschwindens zweier flüssiger Schichten	Temperatur der sekundären eutektischen Krystallisation
	0.000	3·000	0.0	126.0		
	0.150	2.850	5.0	119.5		
	0.300	2·7 00	10.0	115.5		
1	0.600	2·4 00	2 0.0	115.0	119.2	23:5
	0.800	$2 \cdot 100$	30.0	115.5	121-1	
	1 • 200	1.950	35.0	115.6	$122 \cdot 5$	23.5
	1.020	1.800	40.0	115.2		
	1.500	1.500	50.0	115.3	$122 \cdot 9$	-
	1.800	1.200	60.0	$115 \cdot 2$	$122 \cdot 8$	-
	2 · 1 00	0.900	70.0	115.0	$121 \cdot 9$	·
4	2.749	0.782	77.8	115.2	nicht bestimmt	23 •5
1	$2 \cdot 400$	0.600	80 · 0	115.2	120.2	`
	2.700	0.300	9 0·0	115.2	116.5	
100	$2 \cdot 850$	0.120	95· 0	106.9		
	$2 \cdot 950$	0.020	98.3	- 71.0	·	·
- 54		[[1		

III. Die Systeme von Diphenylmethan mit Nitrophenolen.

Zur Untersuchung kamen die Systeme von *m*- und *p*-Nitrophenol und Pikrinsäure.

Wie man aus der Wiedergabe der Versuchsresultate im den Tabellen X bis XII und ihrer graphischen Darstellung in den Fig. 10 bis 12 hervorgeht, liegen in diesen drei Systemen keine Verbindungen der Komponenten vor. Diese liefern vielmehr bei vollkommener Mischbarkeit im flüssigen Zustande einfache Eutektika. Im System *m*-Nitrophenol-Diphenylmethan liegt das Eutektikum bei 97 Atomprozent Diphenylmethan und 22°, im System *p*-Nitrophenol-Diphenylmethan zwischen 99 und 100 Atomprozent Diphenylmethan und rund 23°; im System Pikrinsäure-Diphenylmethan bei 93 Gewichtsprozent. Diphenylmethan und 22.5°.

R. Kremann und J. Fritsch,

Tabelle X.

System *m*-Nitrophenol – Diphenylmethan.

	Zusatz von <i>m</i> -Nitrophenol	Gesamtmenge	Gewichtsprozente <i>m</i> -Nitrophenol	Temperatur der primären Krystallisation			
	0.000	2.000	0.0	24 · 0°			
}	0.274	2.274	12.1	58.01			
}	0.331	2.331	14.2	62.01			
	0.428	$2 \cdot 428$	17.6	64.5			
	0.525	2.525	20.8	67.51			
	0.623	2.653	24.5	70.5			
1	0.828	2.828	29.2	73.0			
	0.991	2.991	33 · 1	74.5			
	$1 \cdot 224$	$3 \cdot 224$	$37 \cdot 9$	75.5			
1	1.373	3.373	40.6	76.62			
1	1.575	3.575	44.1	78.6			
	1.815	3.815	47.6	79.5			
	$2 \cdot 139$	4.139	51.7	80.6			
	2.366	4.366	54.2	80.8			
	2.677	4:677	57.3	81.8			
	3.191	5.191	61.5	$82 \cdot 8^{2}$			
	3 ·798	5.798	65+5	83.5			
	¹ Sekundäre eutektische Krystallisation zwischen 22.0° und 21.8° ² bei 21.5°						

a) Menge: Diphenylmethan 2.000 g.

b)	Menge:	m-Nitro	phenol	3.000 g.
----	--------	---------	--------	----------

Zusatz von Diphenylmethan	Gesamtmenge	Gewichtsprozente <i>m</i> -Nitrophenol	Temperatur der primären Krystallisation
0.000	3.000	100.0	94·8°
0.106	3.106	96.5	$92 \cdot 8$
0.235	$3 \cdot 235$	92.6	$91 \cdot 8$
0.448	3.448	87.0	$90 \cdot 2$
0.752	$3 \cdot 752$	80.0	87.5
1.075	4.075	$73 \cdot 5$	86.0
1.348	$4 \cdot 348$	60.0	8 4 · 5
1.593	4.593	65.4	83.8

Tabelle XI.

System *p*-Nitrophenol-Diphenylmethan.

Zusatz von Diphenylmethan	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	2.859	0.0	111.6°
0.140	2.999	4.4	108.41
0.284	3.143	9.0	106 7
0.460	$3 \cdot 319$	13.9	103.9
0.657	3.516	18.8	$102 \cdot 6^{1}$
0.871	3.730	$23 \cdot 4$	101.2
1.038	3.897	26.6	100.2
1.209	4.068	29.6	99.61
1.486	4.345	$34 \cdot 2$	98 • 1

a) Menge: p-Nitrophenol 2.859 g.

¹ Sekundäre eutektische Krystallisation bei 22.9°

Zusatz von <i>p</i> -Nitrophenol	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisatio
0.000	2.856	100.0	23•9°
0.204	3.060	93.3	61.01
0.452	3.308	86.5	$72 \cdot 2$
0.899	3.755	76.1	82.01
1.338	4.194	68.1	87.6
1.955	4.811	59.3	90.7
$2 \cdot 842$	5.698	50.1	93.91
$3 \cdot 905$	6.761	$42 \cdot 2$	$96 \cdot 2$
4.858	7.714	37.0	$97 \cdot 8$
5.972	8.828	32.3	99.01
7.130	9.986	$28 \cdot 5$	100.0

b) Menge: Diphenylmethan 2.856 g.

¹ Sekundäre eutektische Krystallisation zwischen 23.1° und 22.9°

Tabelle XII.

System Pikrinsäure-Diphenylmethan.

Zusatz von Diphenylmethan	Gesamt- menge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000	2.815	0.0	121.5
0.250	3.065	8.1	$112 \cdot 61$
0.373	3.188	11.8	110.3
0.521	3.336	15.8	108.01
0.717	3.532	20:3	$105 \cdot 4$
0.894	3.709	$24 \cdot 2$	`103·11
1.102	3.920	28.2	101.6
1.401	4.216	33.4	99.51
1.527	$4 \cdot 342$	$35 \cdot 2$	$98 \cdot 2$
1.700	4.614	39.0	97.01

a) Menge: Pikrinsäure 2.815 g.

Zusatz von Pikrinsäure	Gesamtmenge	Gewichtsprozente Diphenylmethan	Temperatur der primären Krystallisation
0.000			
0.000	3.093	100.0	24.0
0.222	3.312	93.1	$22 \cdot 3^{1}$
0.624	3.717	83 • 1	53.6
0.973	4.066	75.9	68.5
1 290	4.383	70.6	75.5
1.660	4.753	65 1	80.52
1.942	5.035	61.3	83.8
2.194	5.287	58.4	$85 \cdot 2$
$2 \cdot 454$	5.547	55.7	87.42
2.823	5.916	$52 \cdot 2$	89.3
$3 \cdot 239$	$6 \cdot 332$	48.8	91.8
3.284	6.677	46.1	$92 \cdot 6^{2}$
$4 \cdot 245$	7.338	42.1	94.5
4 875	7.968	38.7	96.8
5.227	8.320	37.1	$96 \cdot 92$
6.222	9.315	33.2	98.8
¹ Sekundäre et	utektische Krysta	Illisation bei 22.3°	
2 Gleichzeitig s	sekundäre eutekti	sche Krystallisation	•

b) Menge: Diphenylmethan 3.093 g.

Chemie-Heft Nr. 10.